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ABSTRACT

The asymptotic zero-crossing rate (ZCR) of the general first and

second order autoregressive processes is investigated. When the

associated characteristic polynomial has a unit root e 0 < 0 < 7r, the

ZCR converges in mean square to O/w, and the rate of convergence is very

fast regardless of the noise level. It is conjectured that in higher

order autoregressive processes multiple unit roots can be determined by

the ZCR of the filtered processes. An indication to this effect is given.
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Convergence of the Zero-Crossing Rate of

Autoregressive Processes and its Link

to Unit Roots

1. Introduction

In this paper we investigate the convergence of the zero-crossing rate

(ZCR) of nonstationary first and second order autoregressive processes. In

addition to other parameters', of special concern to us is the link between

the unit roots of AR(2) processes and their ZCR. Our main result states

that the ZCR of a nonstationary AR(2) whose characteristic equation has a

iounit root e , 0 <_ e < n, converges to 0/ in quadratic mean. It seems

that the convergence is very fast and is essentially identical to the case

of a pure sinusoid regardless of the magnitude of the additive noise com-

ponent. At present it is not clear how to extend this result to the general

nonstationary AR(p) with unit roots, but it is conjectured that the ZCR of

the filtered processes may be the required remedy. An indication of this

fact will be illustrated at the end.

Let {Xn ) be a Gaussian process with zero mean and wherenI
n = O,±l,±2,..., and let {Xn) be the corresponding clipped process

Xn> 0
Xn = f n = O,±l,-2.0, X n < 0

The quantity

N)2
DN : (xj - Xj_)

N(( j=l

is called the number of zero-crossings of the time series X0,X l X2 '

... X ,N. PN(')/N is the corresponding ZCR. When {Xn ) follows a first order

.. ...L .. .. N im m m m~ m ml N i mm



* 2

autoregressive model

Xt  axX t + Ct,  a f R,

then under some conditions

I.i.m iD (1)= -1

coscx lal 1

The complete statement is given in Theorem 2.1.

Let 8 denote the backward shift operator, and consider the nonstationary

AR(2) process with two unit roots

(1 - eiB)(I - e-ieB)Xt = CC 0 < 0 S .

Then under appropriate conditions

l.i.m -V N(*) -

A more complete statement is given in Theorem 3.1.

The paper is organized as follows. After some preliminaries, section 2

treats the first order case while section 3 deals with the second order case.

The method of proof is the same in both cases. Section 4 deals with unit

roots.

1.1 Preliminaries and motivation

For a better exposit-Ion it is helpful to expound on some key observa-

tions.

Throughout the paper we assume that {Xt}, t 0,±l,±2,..., is a zero

mean Gaussian process with correlation function
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EXtXt+k

{EXtEX 2
t t+k

It turns out that our processes become asymptotically stationary by

satisfying the condition

urm Pk(t) = Pk = P-k' k = 0,1,2,... (1.1)

k
Now, if a = (al,... ak)' E R , then we have

1 i ... k-1

Pi.. k-2 k ( X~ 2a l a lira E 2> 0
"a' : ~i 2 ( ) }

~ . t_ =l (EXt+j)

\k-1 Pk-2 1..

and therefore the matrix (pmi _mj), ij = 1,...,k, is always nonnegative

definite and there exists a stationary Gaussian process {Yt) such that

EYt = 0, EYtYt+k = Pk' k = 0,1,2,...

This fact is fundamental to our development.

Another useful fact is the formula [1, p. 34]

1 1- l
EXjXj+I = T + sin (1.2)

It follows that when (1.1) holds we have

Iim -ED (Y) = I cos p1 . (1.3)

This is the limiting expected ZCR. It turns out that the ZCR itself

achieves this limit in quadratic mean when (1.1) holds.
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The motivation for using the ZCR in determining unit roots in non-

stationary autoregressive processes springs out from the following fact.

A second order autoregressive Gaussian process with two unit roots e
±ie

(they are a conjugate pair) has the form

Xt =2 cos eXt-l - Xt- 2 + Et  (1.4)

where {c t} is Gaussian white noise. Assume for a moment that ct = 0

with probability one. Then [Xt} is a pure sinusoid with frequency 0 and

this implies that with probability one

or that

l .i.m RVN () - _T

The surprising fact is that this limit remains true even in the presence

of Ct in (1.4), and in fact regardless of the magnitude of ct, that is,

regardless of the size of Var(ct). Moreover, the rate of convergence of

the ZCR to 0/7r is fast, Evidently, these are robustness properties of

the zero-crossing rate.
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2. The ZCR of a general AR(1)

Suppose {X t  follows the AR(1) model

Xt  a Xt_1 + Et ,  t = 0,±,..., a / 0 (2.1)

where {ct) is Gaussian white noise with mean 0 and variance a Let

X0 E C be an initial value independent of fct with EE = 0, EC2 = a2

The solution of (2.1) depends on whether t > 1 or t < -1 and is given

by

Xt = t +a t-1 +" ... + act-1 + Ct t > (2.2)

Xt = a & - a t _ 0 - a"'" - a Et+19 t < - . (2.3)

Note that {Xt} is not a stationary process but that (2.1) has a stationary

solution when lal t 1. For s > 1, t > I define

(1-a 2)o .02 2
y1t,s) 2

1 1-a 2 )a2 + (a, 2 (t+s) _ 00 E

-2(t+s) 2

a(t,s) a 2 + (a t+s) 02

It follows that uniformly in s and as t - J

-, 0, Ial < 1¢1 (t,s)>1 L1, ( > I

and

I(t sI E1 < 1

01(t,s) 1
0. ! > 1.
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Ps(t) can be expressed conveniently by

Ps(t) = {€i(t,s) + Sl(t2sy} "t--)S, tt )s I{ +~ to s
a + (t+s)o "

Similarly, for t < -1, s < -1 define

CC

2 -2 G 2
2 (t's) = 2(t+s)2 2- a

Then again uniformly in s and as t - o

2(t s ) a a I, < a

0, i al > I

and

a 2(t 2aY 5)2(1 -cy-(c(ts
0, tr e > i.

The correlation function becomes

Ps(t) : {q2(t,s) + c2s2 ( t,s)})-2 " (__ )s, faf 1

= - to

= 2 2 " 'I t = i.

We therefore have
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Lemma 2.1. Assume that [Xt) follows the AR(1) model (2.1) where X.

is independent of the Gaussian white noise {c ). Then

as Io 1 < 1

lim Ps(t) = , uniformly in s > 1.

lim P (t) = , uniformly in s > 1.t - CO S - s , I c l > I

lim P.s(t) = a, Ici 1.
t-+±oo -

Proof. If jal < 1 and (I-a2)a2 = a2 then Yl(t,s) = 0 and

* 1 (t,s) = I and so Ps(t) = a for all t. If Ji < I and
2 22

(i-a2)a2 a 2 we have

IPs(t) - asi I[1 (t,s) + a2si lt,s)1 - klsi.

Because 01(t,s) -0 0, p1(t,s) - 1 uniformly in s 1 1 as t -o

for any c > 0 we can find TI > 0 such that whenever t > T

2
l~ t,s)l < C and 1 l(t,s) - 2.2

2s0  2
Choose so such that 2a < L- . Then for t > T1, S > S

IPS(t) - a < .

Since lim Ps(t) = as for s = 1,2,.... S,  we can find TO such that
t-*C

for t > T0  we also have lp s(t) - < for s 1,2,... 0 Thus

if we put T = T1 v T0 then whenever t > T



8

Ps(t) < for all s > 1.

If l > 1 then obviously (1-22 a2 and for sufficiently large t

-2t 2
2s aaC___a 1(ts) 1(1 2) 2 + (a-2(t+s) _ 1)02I

2
C£

2

Ca2

a2t [(2 1)02 +0C21 GE

a

-1. 0, t 4. c uniformly in s > 1.

Now

jPS(t) (I JS = I( , (t's) + .2s- iJ.

But since 1(t,s) -~1 uniformly in s > 1 as t - ,and since

2 s

(,,t) -~0,t) uniformly in s > 1 as t This takes care of the

first part of the lemma. The -:econd part can be proven in the same way,

and the third part is obviously true since we do not claim a uniform

limit for this case. u

In order to translate Lemma 2.1 into a statement about the con-

vergence of the ZCR we shall use the fact that the process in (2.1) con-

verges in some sense to a stationary process regardless of a. Recall

that a sequence of Gaussian processes

I = (X x EX : =O, all i > 1,

'2

= " -- i S Iml i ili l I i l l i li
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converges in distribution to a Gaussian process

V = (YY2 EY = 0, all i 1

if and only if

(n)x(n) for

lim E m+k m n EYm+k Ym  all mk.
n- n

We shall say that the convergence is uniform if it is uniform in m and k.

When jal < 1. (2.1) has a stationary solution
00

Yt = I O , ,.j  (2.4)
j=0

and when lIc > 1 (2.1) still has a stationary solution of the form
00

- Z ct+i+I  t = 0,tI,... (2.5)
j=0

Define a sequence of random variables {Wi} by

W= ( -aT)i X, X., N(0,1). (2,6)

In accordance with (2.1), (2.4), (2.6) we further define

2 XXoE,,...

('n =(Xn/ n+l/X+I

Y = /1-a2 (Yo,Y 1 1...)

14 (Wo,W 1 ,...).

jur discussion will focus on the relationship of the ZCR of I' to that

of In, Y and W. The idea is to show that the ZCR in Y n converges to

that of Tf for II < 1 but it converges to that of W# for ji _ 1, and
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then show that the asymptotic ZCR in In and I are the same. Our first

step in this direction is to observe that Lemma 2.1 implies

Lemma 2.2. Assume that {Et ) is Gaussian white noise and that X0

is a zero-mean normal random variable independent of {Elc 2 ,...

Then as n - - we have

(i) If Jl < I then Yn converges to Y' in distribution uniformly.

(ii) If Jcx > I then R n converges to MJ in distribution uniformly.

(iii) If Iul = 1 then X'n converges to W in distribution.

Let DN(Y), VN(W ) be the numbers of zero-crossings in (Yo,Y 1 ,...,YN)

and (Wo,WI,... ,WN) respectively. Because Y is ergodic (1.2) and (1.3)

imply that

lim -N(Y() = 7cos- a a.s.
N-*M

Also, we clearly have

1 1 i c l
1DN(WI) = c ( 0' a.s.

Therefore by bounded convergence

l.i.m-1 =) - cos -a (2.7)
N- RO

and

l~im D 1 s 1 0 28I..mN N(W') = -cos- )(2.8)

We will show that (2.7), (2.8) also hold true for I depending on

whether JIl < 1 or lal _ 1. In passing we note that (2.7) was also

established in [1, ch. 5] by a different method whereby Y( is approximated

by an M-dependent Gaussian process.

L -m • • mm
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Consider first the case JI = I and let M > 2 be fixed. De-

fine by

VDn M 2 n 1
OM n ) = j=1 (Xn+j  Xn+jI)

the number of zero-crossings in (Xn, X n+ .. X n+M) which is the same as

this number for (XR/E/n , . Xn+M/EX ). Then by Lemma 2.2 Y

converges in distribution to Wlas n + - and for all M >_ 2

p 1 -R M(yn) 7 cs-'V( -(-co , n - ,

and hence, by boundedness,

1EV (n ) -ED cos- I, n-*
M Mn 71

and so

I im !ED-1r 1  N(') - cos -

where DN (') is the number of zero-crossings in (X,,X 1, ... ,XN). Now,

since 1 cos-'a = 0 or 1 we obtain
"T

EI (1D 1Cos-la) 2<1 EDV(y)- 2 Co -N1E ICsNN( ()- - - cos-) T

0, N +

Thus

1 1 -1 o 1
li.m 1DN( - - cos a, ja=

Next consider the case Jul > 1. Then again from Lemma 2.2 and (1.2)

lim ED() = cos- C, (2,9)
N_ , N VN- 7
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But since 1 cos- 0 or I again we obtain

l.i.m N 1Dcos 1  T-) (2.10)

For the case lal < 1 we have similarly

lim -EN(1 ) = cos . (2.11)
N-N= 

c

1 -1

Here, however, I cos"a is neither 0 nor 1 and we cannot use the

method employed above. To prove the mean square convergence of the ZCR

in this case we need the following additonal lemma.

Lemma 2.3. Let c be a positive constant and let V = (Yo,YI,...) be

a zero mean stationary Gaussian process with correlation function Pk"

Assume that I = (Xo,XI,... ) is a Gaussian process with mean zero and

correlation function Pk(t) which converges to Pk as t - uniformly

in k. Then,

1.i.m c

implies

N M c (2.12)

Proof. Let Xi = I[Xi _? O] ,9 i = I[Yi >0]' i =1,2,..., be the

sequences of indicators obtained by clipping 1, Y. Define

f(x) = 1 + - sin-x

g(x,y,z) = - + L-(sin-lx + sin-ly + sin- z).

Then f,g are uniformly continuous and for v > u > t > s, we obtain

from [1, p. 341
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EXsXt = f(Pt-s(S))

EXsXtXu = g(pt-s(S),Pu-s(S),Pu-t(t)).

Also, it is known that there exists a function h such that

EXsXtXuXv = h(pt s(s),Pu s(s),Pv s(s),Pu-t(t),Pv-t(t),0v-u(U)).

Obviously h is continuous on the compact set

xI x 2  x53

{(x1 ,... ,x6): 1 4 > 0, (xif 1}
x2  x4 1

x3  x5 x6

and is therefore uniformly continuous there. Thus by uniform continuity

for any c > 0, there is 6 > 0 such that

If(xl) - f(yfl) < c

jg(x 1,x2 ) - g(yly2)1 < c

lh(Xl,...,'x6) - h(Yl,...y6 )I  < C

whenever Ixi - YiI < 6, i =1,...,6. Also, since Pk(n) converges to Pk

uniformly in k > 1 as n - , we can find N such that

jPk(n) - Pk < 6 for all k > 1

whenever n > N . We therefore have
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NE(kPN(r)) 2 - E(kVN(T))21

N NC N 22 N N 22

-N 71 E(I + (xi -x_ ) - E( N-l -
C C

N N
1 E 2)2 C 2 2

N- E I(xi -xi_1) E( (vi- - I +1jjN 1 1

N N2 :+2)N
2 NC 2 N 2 Nv 2 N 21-2 E (X-i..1  X (x - ~)E 1 (V NVi1 (Vj V
N N +1 1N

C C

N2 + MN (N -NC) 16c (N -N:) 2

< C N 2  + N 2

In the above bounding we used the fact ja -bj S a v b, for a,b > 0.

Since c is arbitrary and since N is fixed the last two expressions canC

be made arbitrarily small as N - c, and we proved that

lim {E( 1N(1))2 _ E(r ) = 0.

Next, by the stationarity of Y and by hypothesis,

1 EREVN(Y) = c

and so, by the uniform convergence of Pk(t) we also have

I EDN/ c c, N
a N() r

and (2.12) is proved. 1
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Denote by _ the process Xt in (2.1) for t -1,-2,..... That is,

I- = (x_,,,x_2,.)

Also, recall the stationary solution (2.5) (Zt } 7. We can study the

ZCR in 1_ by comparing it to that of I following the above procedure.

In this case )( plays the role of I while Z plays the role of W. Let

VN(I-) be the number of zero-crossings in XI,x. .... X_Ni, or

ND N('-_) = I (Xj- X-j_1 ) 2

j=1 j

We can prove the convergence of DN(r )/N in precisely the same way used

to prove the convergence of D N( t)/N. Collecting the above results we have

Theorem 2.1. Assume that {X t follows the first order autoregressive

model (2.1) where { t I is Gaussian white noise and where X. 7 is a

zero mean normal random variable independent of ft ). Then

N-iCos- I 1.

Evidently, the asymptotic ZCR depends on a only and is independent

of the magnitude of ft . Figure 2.1 portrays the convergence of the ZCR

for various values of a. For a > 1 the path of the ZCR is much smoother

than the paths corresponding to lal < 1. Our observation has been that

this path property sets apart the "stationary" from the "nonstationary"

cases.
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08 -(NI/N Z(I)=0.5 Z(t-l)+U(t) ;A (NI/N
Z(t)..8 Z (l-II.telt)

06 06-

Q4 04-

02 --02

N 00
0'00 200 400 6O oo iooo 0 200 400 600 800 1"

o8,;6(N)/N
Z(1),099 Z(I-I)fU(I)
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II'

02

0 200 400 600 800 000
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06 0- Q
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02 - 02

00 20 0 60N0 00 N
°°o 200o 400 600 8W 10o 200 400 600 800 o 000

Figure 2.1. ZCR paths of AR(1) processes with c=(0.5,0.8,0.99,1.0,1.05).
Convergence is towards (0.333,0.205,0.045,0,0) respectively. a 2

(D(N)/N - DN(r)/N)
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3. The ZCR of the general AR(2) process

Consider the second order autoregressive process {Xt } defined by

the stochastic difference equation

(1-cB)(1-BB)Xt = ct,  t = O,_I,... (3.1)

where {t I is Gaussian white noise with variance a , and where X -tE

X_2 = are two initial values independent of fct 1. As before, B is

the backward shift operator. Clearly, {XtI is not stationary but the

equation (3.1) has a stationary solution which depends on a,p,. In what

follows, we will show that the asymptotic ZCR of fXt) is determined by

a,B but is independent of the magnitude of {c t . The method of proof is

identical to that given in the first order case. We start off by de-

termining the asymptotic correlations of {X t.

The general solution of (3.1) for t > 0 is given by

It j-lj+1 1

t+2 t1= t (A2 +B2 (t+2)) + I aJ(J+l)ct-j , C = 3 E R
j=O

t+2 (A c s(t+2) e + B sin(t+2)O) + j sin(j+l)e Pi t -j

-=0
io
Spe , p>O

where

A 1A, B -L~ i  r.

A2  B2 = I -

A3 : B3 sin F - sin 0).
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Note that the case a = e corresponds to the unit roots e
iO , e-iO.

Under the assumption that C,i have zero means and finite variances, we

have

(i) a , ,B E R 1

EX2  EA2a2t+4 +EB 2t+4 + E B 2 t+2

t 1 I 1 1

a__2_2t 2 2t+2 t+_____
+ - a2 + 1 2 - 2 1 - , (3.2)

Et2 2t+4+k 2 2t+4+k t+2 k k

EXtXt+k = EAl.I + EB10 + E(A1 B)(W) (a+3

a { 2t+2 2t+2 t+

where if a = I we define (I-a t+)/(1Ia) - t+1.

(ii) a = 1 E R

EX 2 =
2t+4 (A2 + 2AB( ++E 2 (t2 + Cr 2 j( i01 2 (3.4)

(EA2  2 22 t E 2(t2 (j+1)

EXtXt+k = a2t++k{EA2 + E(A2B2 )(2t+4+k) + EB2((t+2)(t+2+k))

+ 02 a 2j+k(j+l)(j +1+k). (3.5)

j:0

When a > 1, in the limit as t of the ratio of (3.5) to (3.4) we

use the facts that

1 t 2j )2 a2

t--. a (t+2) j=O a -1

and
t

lim 2t 2 Y a 0.
t-MCL (t+2) j= 1
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- ie
(iii) i = = pei , e (O,W), p > 0

EX =  p2t+4 EA cos2(t+2)0+EB2sin 2(t+2)e + EA3B3sin(2t+4)e}

02  tt 2 ~ 2i

+ I sin(j+0 p (3.6)
sin 0 j=O

EXtXt+k = pt4 EA 2cos(t+2)0 cos(t+2+k)o + EB2sin(t+2)0 sin(t+2+k)O

+ EA3B3sin(2t +4 +k)O

2 t sin(j+1)6 sin(j+l+k)o 2j+k (37)

j=0 sin20

Observe that

Ssin2(j+06e =

j=O

and

t
j O0 sin(j+l)e sin(j+l+k)e

t sin2 (+l)e cos ke + sin 20 + sin(2t+2)o - sin(2t+4)8 - 1
j=O 4(1 -cos e)

are facts used in the limit ratio of (3.7) to (3.6).

Forming the appropriate ratios of the above expressions and passing

to the limit as t we obtain the asymptotic correlation as follows.

Lemma 3.1. Assume {Xt} follows (3.1), [ct} is white noise independent

of X- , X 2- , E = Ec = 0, EC2,Er,2 <. Then for s > 1
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(i a f B, ,B R

lim Ps M 2 2 J2a! < 1, 161 < 1, uniformly in s > I
t- s2 -) B(I- 2 )  I

- , al > BI _ 1 or I > 1, Ja < 1.

jal

(ii) a = B I

lim ps(t) = as(1 + s(1-a 2 ) < 1, uniformly in s 1t -  s 1 + 2 U 2-

= )s ,  Jai > 1.

(iii) a = = pe i
* e0 (0,), 0 > 0

lim Ps t) = pScos(sO) + (1-p2 )Cos sin sO pS p < 1, uniformly in s > 1
t -s =  

(I +p 2)sin 0

= cos(s6), p = 1, uniformly in s > 1.

Proof. The proof is straightforward and is similar to the one given in

Lemma 2.1.

The stationary solution of (3.1) in terms of a realizable moving-

average is given by

k+1 - k+l 1

k=O a-B st-k' a a B , c,4 E R, fIa < 1, IBI < I

k0 1I (k+l) ct-k ,  a = B E R , a! < 1
k=O

sin(k+1)e k iO
k=O sin t-k a- = pe , 0 < K 1,

t 0,_I......Define
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Zk A cos ke + B sin ke, k=0,1,2,...

where A,B are independent N(0,1) random variables and

Wk a ( v B k x , X - N(*',1),
lot v B I

k = 0,1,..., and let

V (YOY .... )

t

7 (ZoZ 1, ... )

W (Wowil,...)

:(oX1, ...)

n n nXn+I n+1 "

where {X n  is the process in Lemma 3.1. The I process is stationary and

Gaussian with zero mean and correlation function cos(kO), k = 0,1.....

Lemma 3.1 now entails under the Gaussian assumption

Lemma 3.2. Assume {Xt) follows the AR(2) model (3.1) where X_ ,

X - are two normal random variables with zero means dnd finite

variances independent of the Gaussian white noise { t). Then as n

(i) If lal v ' 1 < 1, 1 n converges to T in distribution uniformly.

(ii) If a,B ( R1 , fij v JBI > 1, Y n converges in distribution to W.

(iii) If a ==ei,'Y n converges to 2 in distribution uniformly.

As in the first order case, the asymptotic ZCR of e' is the same as

that of X but that of Yn is the same as the asymptotic ZCR of Y( or that
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of 2 or that of WI depending on a,,. Thus, we need to obtain the limit

ZCR in the latter cases.

Under the Gaussian assumption V is ergodic. Also, for Jai < 1,

1I io11 < 1, a,3 ( R and a= =1 e i, l < 1

EYtYt+l _ 1 1 +1
EY2  i cos( )

1~ -1 +i1

so that DN(V)/N -) I cos- (a+ ) a.s. as N w* Therefore by bounded
1 + a,

convergence also

I.i.m !DN(Y) = 1 cos-1 ( +B)

rim N N 1 + -

Since 2 is a sinusoid its ZCR converges to 1 cos- (cos(e)) = ol/ a.s.
IT

so that again

N-w N 7r

Similarly, it is easy to see that

l.i.m 1 D(W) 1Cos-l~ v% V

I- N VN( ) T la- ( Ix 5I ci v ,f "

The convergence of DN(Y)/N for the cases corresponding to I I < 1,
1 - i0jal < 1, x,B E R , and a = 1 = , can be established by

Lemmas 2.3, 3.1, 3.2. The case a,5 E R1 and IjI v I > 1 is much

simpler and follows from Lemma 3.1 which gives

lim P1(t) = a V i3
t-).W Ix V 6

so that

I i (ED I) 1 s- a V "
N N(i raO t
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But - cos- I VB 0 or I and this implies
\~r la V4 BI )___ J

l.i.m ,N(Z) : - cos-1 ( L v -
The same method can be used to obtain the asymptotic ZCR in

) _ -(X 2,X 2,...) with the appropriate conditions on aB. This re-

sult and the summary of the above discussion are given in

Theorem 3.1. Assume that {Xt  follows the AR(2) model (3.1) with

initial values X-, = C, X-2  C that are normal random variables with

zero means and finite variances and independent of the Gaussian white

noise {t). Then regardless of the magnitude of ct

I Cos-I( + a,B ),R, IiI < 1, j~j < 1•r n 1 +o 3/'

) I cos-l2p cos - io
I 1 IT ( --- ) I a = p e Ip < I, 0 <Oe

I - oa v 1 ' '
-. cos -1 ,, R l V

0 eiO7T I , = 7":T <O

1- +
C- ia ,f E R1  Jul I , Ji) I
Cos-l(2co02 O), = e , > 1, <os 0

11 - "s A R1  j A
i

0 - iO

LT 9 ~ e 0 <O0'< T
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'' 0
Remark. For the case a =  = pe i , p > 1, 0 0, the limit

EX tX t+k
limEtt k (3.8)

xt t+k

need not exist for every k. To see this put r = 0. Then

2  2 -p2 (t 1)  1 - 2(t+1)ei2(t+ -  ei2e 2
EX t 2p2Re 2i2- e2

and

k+2 1 1 -P2(t+1) iko _ 2(t+1) ei2(t+l)e i(2+k)e 2
EXtXt+k 2p Re 2 2 2 e 2 i20 e oY

p sine L i-p -e

The problem lies in the fact that e i2(t+1)O does not have a unique limit

as t and that this term cannot be eliminated in the corresponding

ratios. More precisely, let

1 be _ 11 2 ' 1 e2

Then a > b. Take a subsequence {ts} of (1,2,...} such that

its iu
lim e = e , u ( (0,2r].

Then

EXts ts+k a cos kO + b cos(u+40+kO+a)
lim S= _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

t-)0 /EX 2EX +N {[a + b cos(u+40 + )I[a +b cos(u+40+2k6k+2)}2

s s

But this limit depends on u and so 3.8 need not exist for a given k,O.
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4. The case of unit roots

The most interesting case occurs when the equation

(1-ax)(1-Sx) = 0 has two unit roots e and e- i  0<e< . In this

case (3.1) reduces to

Xt = 2 cos eXt-1 - Xt- 2 + Ct' 0_<-<7. (4.1)

By Theorem 3.1 then the ZCR VN( )/N converges to 0/n as N

Figure 4.1 shows a typical realization of (4.1) for e = n/6. The process

oscillates as a sinusoid except that the amplitude tends to increase with t.

Because of the sinusoidal oscillation the rate of convergence of the ZCR

is very fast and is essentially identical to that observed in a pure

sinusoid. In other words, the ZCR of (4.1) is the same whether a2 is

large, small or even 0. This is illustrated in Table 4.2. The fast rate

of convergence is displayed in Figure 4.2 and Tables 4.1, 4.2. Conversely,

a fast rate of convergence of the ZCR is a very good indication of the

presence of unit roots.

ZMt) 2 cos(vr/6) x Z(t -1) - Zt-2) U tM

50,z(t) 0.

-50

-10
0 200 400 600 800 1000

I

Figure 4.1. Realization of a second order autoregressive process with
two unit roots eiR/6 , e iT/6 , and 2 1.

E
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aLS %(N)/N
Z(t) 2 cos(r/4)Z(t-I)-Z(t-2)+U(t)

06

04

02-

0 200 400 600 800 1000

S(N)/N
ZM 2 COS (T/3) Z(t-I)-Z(t-2)+U(t)

I06-

04-

02

0 200 400 600 800 0o

Fiqure 4.2. ZCR paths of AR(2), a = 1, with unit roots at e

and e±i n/3 The convergence is towards 1/4 and 1/3 respectively.

(D(N)IN DN(Y')N)
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/n 1.00000 0.95490 0.50000 0.08134 0.00000
.90000 . P, 000 .40000 1 NPO, 1. (1 O' 0()

.99804 ,95490 .49608 .08235 .00:1.96

.99901 .95545 49802 .0811.9 .00099

.99934 .95407 .49868 .06146 .00066
* 99950 1 95,2. ' 49900 S 08:'.9 .0 00,.3

.99960 .95498 .49920 ,08.167 .00040
,99967 9,J15 49934 08140 . 00033
.99972 .95499 .49943 .0848 . 0 0:)I
.99975 .95486 4 99 .... .08155 .00025
.99978 .95499 .49956 0 8 137 000"22
.99980 .95489 .49960 .08144 '"10020

99982 . 95499 * 49964 08149 .00018

99983 .9549 . 49967 081 .00017
.99985 .95499 .49969 .08141 00015
* 999(6 . 9549. .. 49 1 .:146 .00014
.99987 . 95499 4"973 108136 . 0001.3
99988 . 95493 4997ff 0 81.40 ) 001. 2

5 4 988 4 9488 9 4976 • 081.43 .000 2
.99989 . 9 5494 49978 .08 1315 .00011.
.99989 .95489 .49979 08139 .00011

.99990 * 95495 . 499(0 0 314 .0001.0

Absolute
Error 0.00010 0.00005 0.00010 0.00007 0.00010
N = 10010

Table 4.1. Convergence to 0/7r of DN(Y)/N, N = 10 5 1 0 ,1010 ,1510

2010, ... , 10010, from the model (4.1) with a = 1. The rate of con-
e

vergence is fast.
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B/n = 0.15915 6/7 0.79577

N 2 =0 a2 = (8976)2 a2 = 0 2 = (7.106)2
C C C

10 0.20000 0.20000 0.80000 0.70000
510 0.15882 0.16078 0.79608 0.79412
1010 0.15941 0.15941 0.79505 0.79505
1510 0.15960 0.15894 0.79536 0.79536
2010 0.15920 0.15920 0.79552 0.79552
2510 0.15936 0.15896 0.79562 0.79562
3010 0.15914 0.15880 0.79568 0.79568
3510 0.15926 0.15897 0.79573 0.79573
4010 0.15910 0.15910 0.74576 0.79551
4510 0.15920 0.15898 0.79579 0.79557
5010 0.15928 0.15908 0.79581 0.79561

Absolute
Error 0.00013 0.00007 0.00003 0.00017
N = 5010

Initial X1 =5000. X -1256. X= 33. X 55.values = 2 =

Table 4.2. Convergence to 0/n of D()/N from the model (4.1) with a 2

very large or 0. The convergence is essentially independent of o.2
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The last remark that unit roots correspond to a fast rate of ZCR

convergence can be illustrated by the model (3.1) with a = = peie

0Sp_<l. In this case (3.1) becomes

Xt = 2p cos OXt-1 P 2 + t (4.2)

where 0< p <1 means that (4.2) has a stationary solution while p = I

corresponds to two unit roots and (4.2) does not have a stationary solu-

tion. By Theorem 3.1

DN,/ 1cos' (2pl Cos 0
N(Y)/N - w 7 Cos I+(02 ) (4.3)

Table 4.3 gives the ZCR for N = 10,210,410,610, ... ,5010,

p = 0 ,0.5 ,1, and 0 = 2.5. From the table it is evident that the

rate corresponding to p = 1 is faster than in the other two cases.

(Note that p = 0 means that Xt is white noise.) Again, as in the

first order case, the ZCR path corresponding to the "nonstationary"

case is much smoother than the paths produced by the "stationary"

series.

U,



.. ...A t- - - , ' . 7 : : . . . . . . . . . . . . . . . . .

, 30

p = 0, 0 2.5 p =.52.5 = =, 2 = 2.5

= 0.50000 = 0.72144 0.79577

ZCR ERROR ZCR ERROR ZCR ERROR

130000 -. , 20000 .70000 - , .0214*. ;'0000 0=77,., v
. 02857 .742%b 02 41 .79048 (10' 30

,51463 .01 463 .72 N...79268 00.. y
, 51311 . 01.311 1731.10 . 0 '09y' ',  .7"90',,08 ,00 (0AP ;

50494 .00494 ,72963 0 O l 79:0)6 .A,

.49109 -. 00891 .73960 0 (.1816 9,04 00026

.48843 - 011 5 73223 01079 .5;"37 .00009

.48794 , 01206 ... 345 .0131 M57;74 -. 00003
, 49565 . .0045 7341. 01 '272 I/-' * o.0012
4B453 -. 01547 734425 .02 :....1. .0003t,

,48706 -. 01294 .73284 .01 139 79602 0002

.48824 -. 01176 ,73077 00932 79593 ,00015

.489' ,7 - 01 037 .73320 01 X" '"'" ':.. (N () () ) 0

.48801 -. 011.49 .731VO 0136 /95'49 0000"1.
.48790 - 01210 . 72YO9 ,0084 * ".9"73 .. * ",5

.48671 -. 013~29 .72Y91 M5* 8 -.00009
,. 4 8 6 9 2  .01308 . ,00,'23 . --"00014

.49472 --. 00528 .7 7463 .0031Y .79S4( ... 00017

.49584 -. 00416 . 7248 002 795,84 . 0000"

.49423 -. 00577 72520 .00375 .79.0 .000037

.4937 -. 0063 72369 .00225 .7956 ,.000

.49216 -. 00784 0W - 00....5 . 79572 .00005

.4909. -00907 .25 00"21"4 79569 ." 0

.49116 -. OOS, . .72251 ' 00111 YQ56 -' '.0001.

.49252 -. 00742 .72.391 .00246 .79784 . 00007

.4944 16 -. 0055? "723 ?"900...... TY507.000

Table4.3. Convergence of N(/N, N = 10 210 ,410 9610 ,... 5010,

from 4.2 with a 1, / I = 10.185, 02=-5.114. ERROR E ZCR -

w given in 4.3. The ERROR column indicates the rate of convergence.
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4.1. Multiple unit roots and ZCR of differenced series

As noted in the introduction, at present it is not entirely clear

how to extend our results to the case of multiple roots. However, we

conjecture that the ZCR of the filtered series may determine these roots.

An indication of this fact is now outlined.

Let V 1 1 -B be the difference operator and consider the ZCR of
{kxt i~l eio2

v Suppose the unit roots are recorded as e , e where

0 6I < 02 < ... < 1. Then under some conditions, as k , the ZCR

for large N converges to the greatest 0./n. We can illustrate this

idea by examples. Figure 4.3 displays the ZCR paths obtained by re-

peated differencing. The lowest path corresponds to no differencing,

the one above it corresponds to the ,st difference and so on. This

monotonicity is due to repeated differencing which acts as sequential

highpass filtering. In the two cases in Figure 4.3 the roots are

e±i t, e±i /3 and e±iO"857r, e±i0"15 , respectively, and the processes

are AR(4). In both cases convergence to the greatest ej/0 occurs as

k -0 C. We shall pursue this line of thought elsewhere.
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RATE PROCESSES FOR NOt4STATIOtIARY ARW4

10

(a) 08 I
04

0L2

00 200 400 600 800 1000

(.0'IN/
RATE PROCESSES FOR NONSTATIONARY ARM4

0L8

(b) 06

Q2

Figure 4.3. ZCR paths from differenced AR(4), k = 0,1,... ,7, with

four unit roots converging to the largest e /iT. In (a) all the paths
3

are the same. In (b) the convergence of the paths tc a straight line

is fast. (0(N)/N D VN(Y)IN)
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